Scalable Nearest Neighbor Algorithms for High Dimensional Data
نویسندگان
چکیده
منابع مشابه
High dimensional nearest neighbor searching
As databases increasingly integrate different types of information such as time-series, multimedia and scientific data, it becomes necessary to support efficient retrieval of multi-dimensional data. Both the dimensionality and the amount of data that needs to be processed are increasing rapidly. As a result of the scale and high dimensional nature, the traditional techniques have proven inadequ...
متن کاملEfficient K-Nearest Neighbor Join Algorithms for High Dimensional Sparse Data
The K-Nearest Neighbor (KNN) join is an expensive but important operation in many data mining algorithms. Several recent applications need to perform KNN join for high dimensional sparse data. Unfortunately, all existing KNN join algorithms are designed for low dimensional data. To fulfill this void, we investigate the KNN join problem for high dimensional sparse data. In this paper, we propose...
متن کاملFast Nearest-Neighbor Search Algorithms Based on High-Multidimensional Data
Similarity search in multimedia databases requires an efficient support of nearest-neighbor search on a large set of high-dimensional points as a basic operation for query processing. As recent theoretical results show, state of the art approaches to nearest-neighbor search are not efficient in higher dimensions. In our new approach, we therefore pre-compute the result of any nearest-neighbor s...
متن کاملAn efficient nearest neighbor search in high-dimensional data spaces
Similarity search in multimedia databases requires an efficient support of nearest neighbor search on a large set of high-dimensional points. A technique applied for similarity search in multimedia databases is to transform important properties of the multimedia objects into points of a high-dimensional feature space. The feature space is usually indexed using a multidimensional index structure...
متن کاملOn Optimizing Nearest Neighbor Queries in High-Dimensional Data Spaces
Nearest-neighbor queries in high-dimensional space are of high importance in various applications, especially in content-based indexing of multimedia data. For an optimization of the query processing, accurate models for estimating the query processing costs are needed. In this paper, we propose a new cost model for nearest neighbor queries in high-dimensional space, which we apply to enhance t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2014
ISSN: 0162-8828,2160-9292
DOI: 10.1109/tpami.2014.2321376